STAR HFT and D⁰ v₂ measurement

Hao Qiu 仇浩 Lawrence Berkeley National Lab

Combining QM slides from Giacomo Contin and Michael Lomnitz Work from many people

workshop on New Progress in Heavy Ion Collision, CCNU

Outline – Heavy Flavor Tracker (HFT)

- Physics motivations
- The MAPS-based PXL detector
- HFT status and performance
- Future "HFT+" Upgrade plan
- Conclusions

STAR HFT Physics Motivation

Extend the measurement capabilities in the *heavy flavor* domain, good probe to QGP:

• Direct topological reconstruction of charm hadrons (small $c\tau$ decays, e.g. $D^0 \rightarrow K \pi$)

workshop on New Progress in Heavy Ion Collision, CCNU

HFT Subsystems

Tracking inwards with gradually improved resolution:

PiXeL detector (PXL)

- Monolithic Active Pixel Sensor technology
- 20.7 μm pitch pixels

workshop on New Progress in Heavy Ion Collision, CCNU

Silicon Strip Detector (SSD)

- Double sided silicon strip modules with 95 μm pitch
- Existing detector with new faster electronics

Intermediate Silicon Tracker (IST)

 Single sided double-metal silicon pad with 600 μm x 6 mm pitch

First MAPS-based vertex detector at a collider experiment

Hao Qiu (LBNL)

PXL System Overview

Cantilevered mechanical support with kinematic mounts (insertion side)

10 sectors total 5 sectors / half 4 ladders / sector 10 sensors / ladder

Ladder with 10 MAPS sensors (~ 2×2 cm each)

carbon fiber sector tubes (~ 200 µm thick)

- Novel insertion approach
 - Inserted along rails and locked into a kinematic mount inside the support structure
 - Capability to fully replace PXL within 12 hour

PXL Sensor

Monolithic Active Pixel Sensor technology *Ultimate-2:* third generation sensor developed for the PXL detector by the PICSEL group of IPHC, Strasbourg

- High resistivity p-epi layer
- S/N ~ 30
- MIP Signal ~ 1000 e⁻
- 928 rows * 960 columns = ~1M pixel
- Rolling-shutter readout
 - connects row by row to end-of-column discriminators
 - 185.6 μs integration time
 - ~170 mW/cm² power dissipation

workshop on New Progress in Heavy Ion Collision, CCNU

Hao Qiu (LBNL)

Position Resolution

- *Ultimate-2* sensor geometry
 - pixel size: 20.7 μm X 20.7 μm
 - 3-pixel av. cluster size $~~~\sim$ 3.7 μm resolution on center-of-mass
- Position stability
 - Vibration at air cooling full flow: ~5 μ m RMS
- Global hit resolution: $\Delta x \approx 6.2 \ \mu m$

- Metrology survey
 - 3D pixel positions fully mapped and related to kinematic mounts
- Alignment
 - Using 0 field cosmic

workshop on New Progress in Heavy Ion Collision, CCNU

AS $Ax \sim 6.2 \,\mu\text{m}$ $r_1 = 2.8 \,\text{cm}$ $\Delta v = \Delta x \cdot \sqrt{\frac{r_2^2 + r_1^2}{(r_2 - r_1)^2}}$ HFT DCA pointing resolution: (10 \oplus 24/p) μm

- Thinned Sensor 50 μm
- Carbon fiber supports
- Air cooling
- Total material budget on inner layer:
 0.388% X_o
 - (0.492% X_0 for the Cu conductor version)

Lessons learned: Latch-up damage on PXL

- Unexpected damage seen on 15 ladders in the STAR radiation environment in 2014 Run first 2 weeks
 - Digital power current increase
 - Sensor data corruption
 - Hotspots in sensor digital section
 - Related to latch-up events
- Latch-up tests at *BASE facility* (LBL) to measure latch-up

cross-section and reproduce damage

- 50 μ m & 700 μ m thick, low and high resistivity sensors; PXL ladders
- Irradiation with heavy-ions and protons
- Results and observations
 - Current limited latch-up states observed (typically ~300 mA)
 - Damage reproduced only with HI on PXL 50 μm thinned sensors
- Safe operations envelope implemented
 - Latch-up protection at 80 mA above operating current
 - Periodic detector reset

Latch-up phenomenon:

- Self feeding short circuit caused by single event upset
- Can only be stopped by removing the power

Latch-up damage: Sensor Deconstruction

- Deconstructing damaged sensor through a plasma etching technique
- The metal layer appears to be melted

workshop on New Progress in Heavy Ion Collision, CCNU Hao Qiu (LBNL)

HFT Status in 2014 and 2015 Run

- Collected minimum bias events in HFT acceptance:
 - − 2014 Run 1.2 Billion Au+Au @ Vs_{NN} = 200 GeV
 - 2015 Run: $\longrightarrow \begin{cases} \sim 1 & \text{Billion p+p} \\ \sim 0.6 & \text{Billion p+Au} \end{cases} @ <math>vs_{NN} = 200 \text{ GeV}$
- Typical trigger rate of ~0.8kHz with dead time <5%
- Sub-detector active fraction
 - PXL
 - > 99% operational at the delivery
 - 2015 Run ended with 5% dead sensors sensors + 1 outer ladder off)
 - IST
 - 95% channels operational, stable
 - SSD
 - 80% channels operational (one ladder off)

workshop on New Progress in Heavy Ion Collision, CCNU

Hao Qiu (LBNL)

HFT Performance in 2014 Run

- DCA pointing resolution
- Design requirement exceeded: 46 μm for 750 MeV/c Kaons for the 2 sectors equipped with aluminum cables on inner layer
- > \sim 30 μ m for p > 1 GeV/c
 - From 2015: all sectors equipped with aluminum cables on the inner layer

Protons

Kaons Pions

HFT goals for Au+Au data-taking in 2016

- STAR/RHIC improvements with respect to 2014 Run
 - PXL equipped with all aluminum cables on inner ladders 0.49% \rightarrow 0.38% X_0
 - SSD at full speed \rightarrow better track matching / ghosting rate reduction
 - Increased luminosity fraction within $|V_z| < 5$ cm
- RHIC beam for 2016 Run:
 - ~10 weeks Au+Au 200 GeV run
 - 2 B minimum bias events
 - Physics goals:
 - Λ_c and B \rightarrow J/ ψ measurements
 - More differential studies on charmed hadron production

workshop on New Progress in Heavy Ion Collision, CCNU

Hao Qiu (LBNL)

Future HFT+ Upgrade plan (2021 - 2022)

- Measure bottom quark hadrons at the RHIC energy
- frame readout: 185.6 µs -> 40 µs or less Faster
 - Using new MAPS sensor developed for the ALICE ITS upgrade

18%

Au+Au 200 GeV @ 2020

2

ZDCx = 100 kHz

2.5

 $HFT^{+}(10\mu s)$

 $HFT^+(40 \mu s)$

HFT(200µs)

Take data in **higher luminosity** with high efficiency

Efficiency: fast vs. slow HFT

1.5

1

Single Pion Efficiency (a.u.)

0.5

0

50%

0.5

HFT+ flagship measurements

Conclusions - HFT

- The STAR HFT has been successfully taking data in 2014 and 2015
- State-of-the-art MAPS technology proved to be suitable for vertex detector application
- The HFT enabled STAR to perform a direct topological reconstruction of the charmed hadrons
- A faster HFT+ has been planned in order to measure the bottom quark hadrons at the top RHIC energy

$D^0 v_2$

workshop on New Progress in Heavy Ion Collision, CCNU Hao Qiu (LBNL)

Motivation

Charm quarks:

- Produced early in heavy ion collisions at RHIC, through hard scattering
- Experience the whole evolution of the system -> good probe for medium properties

Physics interest:

- High p_T: test different energy loss mechanisms: radiative vs collisional
- At low p_T: extract medium properties from motion of heavy quarks in medium (Brownian motion), e.g. diffusion coefficient

workshop on New Progress in Heavy Ion Collision, CCNU

Hao Qiu (LBNL)

Recent developments and understanding

1.5

- RHIC and LHC: *D*-meson R_{AA} suppression at high p_T : strong charmmedium interactions
- $D^0 v_2$ LHC results are compatible with light flavor v_2 , charm thermalized?
- v_2 and R_{AA} can be used simultaneously to constrain models
- What is occurring at low p_T at RHIC?
- Low $p_T v_2$ is especially sensitive to the partonic medium: scattering strength, transport properties

Hao Qiu (LBNL)

D⁰ 0-10% STAR

D 0-10% ALICE

π⁰ 0-10% PHENIX

h[±] 0-5% ALICE

workshop on New Progress in Heavy Ion Collision, CCNU

Hao Qiu (LBNL)

D⁰ reconstruction

D⁰ reconstruction

• Significance greatly enhanced compared to STAR previous, 2010+2011 results.

	w/o HFT	w HFT
	2010 + 2011	2014
<pre># events(MB) analyzed</pre>	1.1 B	780 M
sig per billion events	13	51

v₂: Event plane method

850

800

750

700

650

600

550

Weighted yield

p+p

Au+Au

- Event plane reconstructed using charged hadrons within STAR TPC acceptance (|η|<1)
- Corrected for detector acceptance
- Yields in $\phi \Psi$ bins corrected for event plane resolution

$$v_2 = v_2^{obs} \times \left\langle \frac{1}{\text{E.P. Resolution}} \right\rangle$$

Δη gap of ~0.15 used in event plane reconstruction

$$v_2^{nonFlow} = \frac{<\sum_h \cos(2(\phi_L M v_2^h))}{M v_2^h}$$

 Non-flow estimated from measured D-h correlations in p+p 200GeV

A.M. Poskanzer, et al. PRC 58 (1998) 1671 STAR: PRL 93 (2004) 252301

02

STAR Preliminary

0.6

0.8

φ-Ψ

04

Au+Au 200GeV, 0-80%

 $- v_2^{obs} = 0.080 \pm 0.023$

 $3 < p_{_{T}} < 4 \text{ GeV/c}$

12

v₂: Two particle correlation

 Event by event v₂ for foreground and background

 $<\cos(2\varphi_{h1}-2\varphi_{h2})>=(\nu_2^h)^2$

$$\nu_2^D = \frac{\langle \cos(2\varphi_D - 2\varphi_h) \rangle}{\sqrt{\langle \cos(2\varphi_{h1} - 2\varphi_{h2}) \rangle}}$$

- $h_1 \text{ in } \eta < 0, h_2 \text{ in } \eta > 0$
- Statistically subtract background from foreground to obtain D⁰ v₂
- Corrected for detector acceptance

$D^{+/-}$ reconstruction

• Direct topological reconstruction through channel:

 $D^{\pm} \to K^{\mp} 2\pi^{\pm}$

B.R. 9.1% $c\tau \sim 300 \ \mu m$

• Yield in plane and out of plane obtained following event plane method

Au+Au $\sqrt{s_{NN}}$ = 200 GeV

In plane yield: 172 ± 19

0-80 cent., p_: 2-5

1.95

2

2.05

Invariant mass mkr

workshop on New Progress in Heavy Ion Collision, CCNU

1.9

1.85

Counts per 10 MeV/c²

120

100

80

60

40

20

Hao Qiu (LBNL)

2.1

2.05

Invariant mass m_{kπ}

2

1.95

- D^0 azimuthal anisotropy significantly different from zero for $p_T > 2$ GeV/c (χ^2 /n.d.f. = 17.5/4)
- B->D feed down is negligible at RHIC energies (<5% relative contribution)

D Meson v_2

• Good agreement between EP and 2 PC methods within systematics

workshop on New Progress in Heavy Ion Collision, CCNU Hao Qiu (LBNL)

• $(\chi^2/n.d.f. = 9.6/3)$

STAR:PRC 77 (2008) 54901

Model comparison: TAMU

- Full T-matrix treatment, nonperturbative model with internal energy potential
- Diffusion coefficient extracted from calculation 2πT x D = 2-7
- Good agreement with D⁰ meson v₂ at low p_T, data favors model including c quark diffusion in the medium

(w/ c diff. χ^2 /n.d.f. = 1.8/5) (w/o c diff. χ^2 /n.d.f. = 7.4/5) - χ^2 tests done to v_2

Theory: arXiv:1506.03981 (2015) & private comm. STAR: PRL 113 (2014) 142301

workshop on New Progress in Heavy Ion Collision, CCNU

workshop on New Progress in Heavy Ion Collision, CCNU

Transverse Momentum $\rm p_{_T}~(GeV/c)_{29}$ Hao Qiu (LBNL)

Model comparison: Duke

- Diffusion coefficient is a free parameter, fixed by fitting to R_{AA} at high p_{T}
- Input value for diffusion coefficient 2πT x D = 7 fixed to fit LHC results
- Model with 2πT x D = 7 doesn't describe the magnitude of v₂ in experimental data

Theory: arXiv:1505.01413 & private comm. STAR: PRL 113 (2014) 142301

workshop on New Progress in Heavy Ion Collision, CCNU

Charm diffusion coefficient

- Scan different values of the diffusion coefficient to find best agreement to data
- Best agreement for diffusion coefficient $2\pi T \times D = \sim 1 3$
- This model seems to underestimate the data for $p_T > 3$ GeV/c

Charm diffusion coefficient 40 40 $D \times 2\pi T$ STAR Inferred ■ Lattice QCD: Banerjee et al. PQCD LO • Lattice QCD: Ding et al. 30 30 T-Matrix F-pot. 20 20 T-Matrix U-pot. 10 10 pQCD+HTL 0.5 1.5 T/T_{c}

- Compatible with models predicting a value of diff. coefficient between 2 to ~10
- Lattice calculations, although with large uncertainties, are consistent with values inferred from data

Outlook

- Run 14:
 - Full statistics available soon
- Run 15:
 - Full aluminum cables for inner layer of PXL
 - p+p and p+A data sets with HFT
- Run 16:
 - Full aluminum cables for inner layer of PXL
 - Factor 2 -3 improvement for D⁰
 significance @ 1 GeV -> centrality
 dependence for v₂

Year	System	Events(MB)
Run 14:		
	Au+Au	1.2 B
Run 15:		
	p+p	1 B
	p+Au	0.6 B
Future		
Run 16:		
	Au+Au	2 B

workshop on New Progress in Heavy Ion Collision, CCNU

Hao Qiu (LBNL)

- $D^0 v_2$ is finite for $p_T > 2.0 \text{ GeV/c}$
- $D^0 v_2$ lower than light hadrons for 1< p_T < 4.0 GeV/c
- Data favor model scenario where charm quarks flow
- $D^0 v_2$ and R_{AA} can be described simultaneously by models and are consistent with values of $2\pi TxD$ between 2 and ~10
- Looking forward to improved statistics in year 2016

Thank you!

Diffusion Coefficient from DUKE

Comparison to ALICE

Mass Effect

